High fidelity TNA synthesis by Therminator polymerase
نویسندگان
چکیده
منابع مشابه
High fidelity TNA synthesis by Therminator polymerase
Therminator DNA polymerase is an efficient DNA-dependent TNA polymerase capable of polymerizing TNA oligomers of at least 80 nt in length. In order for Therminator to be useful for the in vitro selection of functional TNA sequences, its TNA synthesis fidelity must be high enough to preserve successful sequences. We used sequencing to examine the fidelity of Therminator-catalyzed TNA synthesis a...
متن کاملHigh fidelity DNA synthesis by the Thermus aquaticus DNA polymerase
We demonstrate that despite lacking a 3'----5' proofreading exonuclease, the Thermus aquaticus (Taq) DNA polymerase can catalyze highly accurate DNA synthesis in vitro. Under defined reaction conditions, the error rate per nucleotide polymerized at 70 degrees C can be as low as 10(-5) for base substitution errors and 10(-6) for frameshift errors. The frequency of mutations produced during a sin...
متن کاملCalcium-driven DNA synthesis by a high-fidelity DNA polymerase
Divalent metal ions, usually Mg2+, are required for both DNA synthesis and proofreading functions by DNA polymerases (DNA Pol). Although used as a non-reactive cofactor substitute for binding and crystallographic studies, Ca2+ supports DNA polymerization by only one DNA Pol, Dpo4. Here, we explore whether Ca2+-driven catalysis might apply to high-fidelity (HiFi) family B DNA Pols. The consequen...
متن کاملDNA polymerase-mediated DNA synthesis on a TNA template.
TNA, or threose nucleic acid, is capable of Watson-Crick base pairing with DNA, RNA, and TNA; coupled with its chemical simplicity, this suggests that TNA is a possible progenitor of RNA. As an initial step toward developing the molecular tools necessary to investigate the functional capabilities of TNA by in vitro selection, we have screened a variety of DNA polymerases for activity on a TNA t...
متن کاملTNA synthesis by DNA polymerases.
Threose nucleic acid (TNA), which has a repeat unit one atom shorter than that of DNA, is capable of Watson-Crick base pairing with DNA, RNA, and TNA. Because of its chemical simplicity, TNA is considered to be a possible progenitor of RNA. As an initial step toward developing the molecular tools necessary to investigate the functional capabilities of TNA by in vitro selection, we have screened...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 2005
ISSN: 0305-1048,1362-4962
DOI: 10.1093/nar/gki840